Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2285023

ABSTRACT

Lung fibrosis quantification from CT scans is prone to large inter and intra observer variability and its correlation with PFT is essential in the definition of disease progression. There is the need for a reliable and reproducible tool for abnormalities quantification. For this reason, a deep learning abnormalities quantification model was used to explore the correlation with PFT in ILD patients. The abnormalities segmentation model is based on 2D U-Net combined with Res Next as encoder and deep supervision and was trained on axial unenhanced chest CT scans of 199 COVID-19 patients and externally validated on 50 COVID-19 patients. Whole lungs were segmented using RadiomiX toolbox. Validation of the quantification performance was explored in a cohort of 20 ILD patients. The model performed the automatic segmentation of all abnormalities and calculate the ratio on the total lung volume ((abnormalities volume/whole lungs volume) * 100). This value is then correlated with the Forced Vital Capacity (FVC) and Diffusion Lung Capacity for carbon monoxide (DLCO) for each patient with Pearson correlation coefficient (rho). The deep learning segmentation algorithm achieved good performances (mean DSC 0.6 +/- 0.1) on the external test set. The percentage volume of disease region correlated with FVC and DLCO were the rho = -0.70402, -0.58133, respectively (P <. 001 for all). The developed algorithm performed similarly to radiologists for disease-extent contouring, which correlated with pulmonary function to assess CT images from patients with ILD. This automatic quantification tool could help in the prognosis and diagnosis of ILDs, based on the lung abnormalities extent.

2.
Aerosol and Air Quality Research ; 22(11), 2022.
Article in English | Web of Science | ID: covidwho-2100065

ABSTRACT

Traffic-related emissions continue to be a significant source of air pollution in the United States (US) and around the globe. Evidence has shown that previous policies implemented to restrict -traffic flows have affected air pollution levels. Thus, mitigation strategies associated with the COVID-19 pandemic that modified population-level mobility patterns provide a unique opportunity to study air pollution change across the US. For instance, to slow the spread of the pandemic, state and local governments started implementing various mitigation actions, including stay-at-home directives, social distancing measures, school closures, and travel restrictions. This scoping review aimed to summarize the existing evidence about how air quality changed through mitigation practices throughout the pandemic in the US. We found 66 articles that fit our inclusion criteria. Generally, the consolidated results revealed that nitrogen dioxide (NO2) and carbon monoxide (CO) decreased across the country. Studies observed mixed directions and magnitudes of change for fine and coarse particulate matter (PM2.5, PM10), ozone (O3), and sulfur dioxide (SO2). Few articles tried to explain this notable heterogeneity in air quality changes by associating contextual factors, such as mobility, traffic flow, and demographic factors. However, all studies agreed that the change in air pollution was nonuniform across the US and even varied within a city.

5.
European Respiratory Journal ; 56, 2020.
Article in English | EMBASE | ID: covidwho-1007181

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status and pushed healthcare systems beyond the limits. We aim to develop a fully automatic framework to detect COVID-19 by applying artificial intelligence (Al). A fully automated Al framework was developed to extract radiomics features from chest CT scans to detect COVID-19 patients. We curated and analysed the data from a total of 1381 patients. A cohort of 181 RT-PCR confirmed COVID-19 patients and 1200 control patients was included for model development. An independent dataset of 697 patients was used to validate the model. The datasets were collected from CHU Liège, Belgium. Model performance was assessed by the area under the receiver operating characteristic curve (AUC). Assuming 15% disease prevalence, a comprehensive analysis of classification performance in terms of accuracy, sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) was performed for all possible decision thresholds. The final curated dataset used for model development and testing consisted of chest CT scans of 1224 patients and 641 patients, respectively. The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset. Assuming the cost of false negatives is twice as high as the cost of false positives, the optimal decision threshold resulted in an accuracy of 85.18%, a sensitivity of 69.52, a specificity of 91.63%, an NPV of 94.46% and a PPV of 59.44%. Our Al framework can accurately detect COVID-19. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the implementation of isolation procedures and early intervention.

SELECTION OF CITATIONS
SEARCH DETAIL